Энергетическое оборудование мгэс. Микро - и малые гэс. Экономика - двигатель прогресса

Не секрет, что в последнее время в стране наблюдается новый виток интереса к теме возобновляемых источников энергии (ВИЭ), в особенности в части малой энергетики. Его проявление нетрудно связать с многочисленными звеньями длинной цепочки причин, заставляющих искать альтернативу традиционным мощностям. Начиная с нефти, взявшей на внешних рынках очередной ценовой рубеж в сто долларов за баррель, как следствие - возросшей стоимости продуктов нефтепереработки на рынке внутреннем и обещаний правительства приблизить цену на газ внутри страны к мировой планке. И заканчивая дефицитом существующих энергетических мощностей, а также пониманием того, что сами по себе запасы органики не бесконечны.

История вопроса

Когда-то СССР по многим видам ВИЭ имел большие научные и технические заделы и богатый опыт использования. Однако в те времена стремление к гигантизму во всех его проявлениях часто ставило крест на многих эффективных сферах энергетики. В эпоху огромных проектов, требовавших больших источников энергии, малые не выдерживали конкуренции с электроэнергетическими гигантами, объединившимися в единую национальную сеть; не могли обеспечить требуемый поток и потому стали отходить на второй план. Их место заняли начавшие строиться в 1950–1960-е годы огромные тепловые и гидроэлектростанции, а впоследствии и атомные станции. Дешевизна первичных энергоресурсов - нефти, газа и угля - надолго похоронила многие сферы ВИЭ. Не стало исключением и одно из наиболее эффективных направлений - малая гидроэнергетика: использование энергии небольших водотоков с помощью микро- (единичной мощностью энергоагрегата до 100 кВт) и малых (единичной мощностью до 10 МВт) ГЭС (далее МГЭС), общей установленной мощностью до 30 МВт.

Еще в начале 60-х годов XX века СССР располагал 11,4% мировых гидроэнергетических ресурсов. Тогда расчеты показывали целесообразность и возможность получать около 1 700 млрд кВт ч электроэнергии, что более чем в пять раз превышало выработку электростанций страны в тот период. Считалось, что основная часть гидропотенциала (74%) располагалась на территории РСФСР. Сейчас этот гидроэнергетический потенциал практически полностью реализуется за счет больших и гигантских ГЭС. Но еще в 1913 году число действовавших в России ГЭС составляло 78 единиц общей мощностью 8,4 МВт. Крупнейшая из них - ГЭС на реке Мургаб мощностью 1,35 МВт. Сейчас их бы отнесли к категории МГЭС. Уже в 1941 году в России работали 660 малых сельских ГЭС общей мощностью 330 МВт. Общее количество МГЭС в СССР после окончания Великой Отечественной войны составляло 6,5 тыс. А во время пика строительства в 1940-е и 1950-е годы ежегодно в эксплуатацию вводились до 1 тыс. объектов.

Но в начале 1950-х в связи с указанным выше началом перехода к строительству гигантских энергетических источников и присоединением небольших потребителей к централизованному электроснабжению данное направление утратило государственную поддержку. Что привело к практически полному разрушению и упадку существовавшей инфраструктуры. Уже в 1962 году в СССР насчитывалось 2 665 МГЭС, в 1980-м - около 100 суммарной мощностью 25 МВт, в 1990 году их осталось всего 55. В настоящее время, по различным оценкам, по всей России действуют от нескольких десятков (60–70) до нескольких сотен (200–300) МГЭС.

В то же время сегодня считается, что по своему потенциалу гидроресурсы России сопоставимы с существующими объемами выработки электроэнергии всеми электростанциями страны. При этом малые реки преобладают в гидрографической сети по числу и общей длине: из 3 млн рек на территории бывшего СССР 2,9 млн - малые реки, а 94% длины речной сети России - малые водотоки. Характерно, что на водосборах малых рек и в их прибрежных зонах сосредоточена большая часть населения: 90% сельского и до 44% городского. По современным оценкам, опубликованным специалистами НИИ энергетических сооружений (Москва), технически достижимый потенциал МГЭС России позволяет производить 357 млрд кВт ч в год. Предполагается, что в дальнейшем малая гидроэнергетика преимущественно будет развиваться в Сибири и на Дальнем Востоке. В европейских районах строительство МГЭС получит развитие на Северном Кавказе.

Красивые планы

При таких «исходных» перспективность развития МГЭС не вызывает сомнений. Это обратило в их сторону взоры органов власти субъектов федерации и крупных игроков и стало дополнительным фактором активизации процессов развития.

Среди регионов Сибири наиболее далеко в вопросе МГЭС продвинулись в Республике Алтай, где разработана концепция развития и схема размещения объектов малой гидроэнергетики 35 малых ГЭС мощностью 105 МВт на территории региона, две из которых уже действуют. По словам министра регионального развития Республики Алтай Юрия Сорокина , недавно проведен тендер и определен подрядчик по проектированию каскада ГЭС на реке Чуя мощностью 12, 25 и 25 МВт. По этому каскаду, а также по двум станциям на реке Мульта и ГЭС Уймень сделаны предложения ГидроОГК и в скором времени ожидается предварительное решение. Также в плане на этот год проведение конкурса на проектирование ГЭС Аргут мощностью около 100 кВт. Выполнение планов является серьезным подспорьем в закрытии 100 МВт дефицита мощностей в республике. Учитывая планы по подключению каскада ГЭС на Чуе к общей сети, результатом вполне может стать снижение тарифа, который в прошлом году составил 1,66 рубля за 1 кВт ч при стоимости на НОРЭМе в среднем 0,5 рубля.

Серьезные планы в Республике Бурятия. По словам заместителя министра по развитию транспорта энергетики и дорожного хозяйства республики Юрия Добровинского , сейчас на стадии завершения экологической экспертизы и разработки проектно-сметной документации находятся проекты ГЭС на реке Ульзиха в Баргузинском районе и Тахойской ГЭС на реке Джида. По предварительным данным, мощность каждой составит около 2 МВт.

Недавно ГидроОГК взялась за развитие малой гидроэнергетики путем выделения из своего портфеля в самостоятельное бизнес-направление проектов по строительству МГЭС - Фонд «Новая энергия». Тем самым компания занялась освоением гидропотенциала малых рек, не отвлекая при этом основные силы от масштабных проектов. Все первоначальные планы фонда связаны с Северным Кавказом. Так, на VI Международном инвестиционном форуме «Сочи-2007» фонд презентовал семь проектов строительства малых ГЭС в Южном федеральном округе, один из которых (создание трех малых ГЭС в Южном Дагестане) уже завершен (станции запущены в декабре 2007 года). В другой - возведение Зарагижской малой ГЭС в Кабардино-Балкарской Республике - привлечен частный инвестор, который обеспечит 40% стоимости проекта, составляющей более 900 млн рублей. Финансирование остальных проектов, представленных в Сочи, осуществляется за счет средств инвестиционной программы ГидрОГК. Вводы мощностей по ним предусматриваются в 2008-2010 годах и сейчас они находятся на стадии практической реализации.

Перспективы МГЭС в Зауралье еще более глобальны: «Сегодня у нас имеются данные по 120 потенциальным площадкам строительства малых ГЭС на территории СФО и ДФО совокупной установленной мощностью более 500 мегаватт. С различным уровнем проработки информации: от идей до серьезных расчетов и обоснований инвестиций», - говорит генеральный директор Фонда «Новая энергия» Андрей Железнов .

Разность подходов

Столь серьезные планы несколько омрачаются реальным новейшим опытом возведения и эксплуатации МГЭС в Сибири, имеющим несколько не очень радужных эпизодов. Объективное видение перспектив невозможно без осмысления недавних событий. Технологии возведения существовавших когда-то многочисленных ГЭС не подходят к современным условиям. За истекший продолжительный период многие компетенции тех времен по возведению МГЭС были утеряны, а многие подходы к их строительству значительно изменились.

По словам генерального директора компании «ИНСЭТ» (Санкт-Петербург) Якова Бляшко , в советские времена к строительству малых ГЭС подходили совсем иначе. «Поскольку на первом месте были интересы промышленности, то стремились использовать гидропотенциал реки полностью, и поэтому малая ГЭС имела плотину. Но малая гидроэнергетика должна выполнять социальную роль и решать социальные задачи. Даже если строительство малой ГЭС экономически целесообразно, но она этой роли не выполняет, то нет смысла в ее возведении», - убежден эксперт. Свою позицию он проиллюстрировал условным примером старого подхода: нормальным считалось строительство малой ГЭС мощностью 15 МВт с удаленностью от социального потребителя на расстояние в 30 км, в то время как при численности населения в 800 человек потребность с перспективой развития составляет максимум 1–1,5 МВт при удалении в 5 км. В первом случае в протянутой от ГЭС до села ЛЭП теряется значительное количество энергии, а поскольку вопросы ее обслуживания не всегда решаются (порывы из-за обледенения, падающих деревьев), то в энергоснабжении нередки сбои.

В связи с этим в современных проектах преобладает подход возведения ГЭС по деривационной схеме, когда от реки на МГЭС делается отводящий рукав-водоток. Такая технология позволяет практически полностью отказаться от водохранилищ и избежать строительства плотин, характерных для крупных ГЭС, а также заметно сокращает период строительства и значительно снижает затраты. Яков Бляшко заметил, что «ИНСЭТ» почти все проекты делает без использования водохранилища: «По деривационной схеме без затопления мы создали два проекта в Кабардино-Балкарии, три проекта в Карачаево-Черкесии и 17 станций общей мощностью более 200 мегаватт в Северной Осетии». Ему вторит Андрей Железнов, отметивший, что «основной задачей фонда является налаживание системы массового, поточного строительства МГЭС, где, в отличие от крупных ГЭС, не признающих типовых инженерных решений, это позволяют делать технологии, применяемые при строительстве гидроузлов малой мощности». Унификации проектов МГЭС так же будет способствовать наличие разработанного и промышленно освоенного оборудования, и опыта его эксплуатации в различных регионах.

Но, как считает директор «Красноярскгидропроекта» Николай Нейланд , дело не столько в генерирующем источнике, сколько в аккумулирующей энергию части ГЭС, то есть водохранилище. Мировая география распространения малых станций затрагивает в основном теплые части света, где ни один водоток зимой не перемерзает. Это в значительной степени относится и к Северному Кавказу. При продолжительности зимы в Сибири в семь–девять месяцев малые водотоки, которые могут давать отдачу, перемерзают, из-за чего работа станций становится очень проблематичной. «В Сибири малая станция не будет нормально эксплуатироваться без резерва воды, хотя бы сезонного регулирования. Для этого нужно создать водохранилище, которое является потенциальным источником энергии. Если это невозможно сделать, то говорить о малой станции просто бессмысленно», - резюмировал он.

Многие проекты малых ГЭС, над которыми работал красноярский институт, предусматривают возведение плотины, однако большие капитальные вложения в напорный фонд (возведение плотины, подготовка ложа водохранилища) а также увеличение времени строительства могут стать непреодолимым препятствием на пути развития малых ГЭС. Относительно деривационного подхода Николай Нейланд заметил, что множество безнапорных станций существовало, например, в Тыве и раньше. Но в основном они предназначались для снабжения сезонных отгонных пастбищ и работали в теплое время года.

Новейший опыт Сибири

Доводы руководителя «Красноярскгидропроекта» косвенно подтверждаются реальной новейшей практикой возведения ГЭС в Сибири. ГЭС Кызыл-Хая на реке Моген-Бурен, запроектированная «Красноярскгидропроектом», с устаноленной мощностью 400 кВт и запущенная в 2001 году с мощностью 150 кВт. Это было сделано в рамках Национальной программы энергообеспечения Республики Тыва за счет использования нетрадиционных возобновляемых источников энергии, предусматривавшей возведение каскада из трех станций. На эти цели от Минэнерго РФ были получены деньги. Впоследствии Министерство энергетики прекратило свое существование, и программа приказала долго жить. Из неофициальных источников стало известно, что все средства израсходованы на одну станцию вместо трех. По всей видимости, это и стало истинной причиной того, что желающих выделять дополнительные средства не нашлось. Текущую фактическую ситуацию с данной ГЭС выяснить не удалось, однако известно, что с момента ее запуска с эксплуатацией регулярно возникают проблемы. Яков Бляшко, компания которого поставила на ГЭС свое оборудование, контролировала строительство и сейчас постоянно оказывает помощь в эксплуатации, охарактеризовал ситуацию на ГЭС следующим образом: «Это не неудачный опыт эксплуатации малых ГЭС, а неудачный опыт подбора соответствующих кадров».

Со вторым по очереди объектом в Республике Алтай - МГЭС Кайру мощностью 400 кВт также были определенные сложности технического плана. По словам Юрия Сорокина, ГЭС начинал строить совхоз, и заложенные проектом противофильтрационные мероприятия не были доведены до конца. В частности, вовремя не защищена пленка, пришедшая впоследствии в негодность. С самой плотиной вопросов нет. Но из-за отсутствия специалистов в округе возник ряд трудностей с ее эксплуатацией, из-за чего во время паводка лишняя вода шла через верх. Сейчас все недостатки устранены, и ГЭС работает в нормальном режиме.

Третья и последняя в Сибири малая ГЭС - Джазатор (Республика Алтай) мощностью 630 кВт введена в строй в ноябре прошлого года. И если Кайру построена по классической схеме, то эта ГЭС уже деривационного типа, с небольшой плотиной и водохранилищем. По всей видимости, проблема перемерзания водотока ей не грозит, учитывая, что минимальная расчетная температура ее эксплуатации составляет -56°С.

Живой фактор

Все три сибирские МГЭС находятся на значительном удалении от цивилизации. Например, село Кызыл-Хая (Тыва) находится в 650 км от Кызыла, а 120 км пути от райцентра села Улаган до села Балыкча (потребителя ГЭС Кайру) преодолеваются за четыре часа. При этом до появления ГЭС местные жители не платили за электричество (солярка для дизельгенераторов - основного в этих районах источника энергии до появления ГЭС - оплачивалась из средств программы северного завоза), а новость о необходимости ежемесячной оплаты энергии в одночасье сделала их врагами возобновляемых источников.

Кроме того, общий уровень жизни и образования населения при такой удаленности от большой цивилизации можно себе представить. А потому большой проблемой является наличие квалифицированного обслуживающего персонала. В Республике Алтай, как считают, нашли выход из этой ситуации. По словам Юрия Сорокина, на Джазаторе создана независимая управляющая акционерная компания, учредителем которой выступил муниципалитет. Квалификация работников поднималась путем обучения на Кайру, а также участия в строительстве Джазатора. Принятые на работу в УК работники из числа местных жителей должны стимулировать продажу энергии, заниматься сбором денег и непосредственно эксплуатацией. Этот опыт планируется перенести на МГЭС Кайру, где до этого у муниципалитета действовал договор с компанией, осуществлявшей только техническое обслуживание и получавшей вознаграждение за технические услуги. При этом обслуживающий персонал не имел специализированных знаний по гидроэнергетике.

Андрею Железнову решение кадровой проблемы видится в следующем: «Поскольку на данном этапе наши проекты реализуются в регионах присутствия ГидроОГК, эксплуатировать построенные малые ГЭС мы собираемся с привлечением специалистов региональных филиалов компании. При работе в регионах, где нет филиалов ГидроОГК, нам выгодно набрать большое количество проектов с такой экономикой, которая бы обосновывала создание и содержание команды специалистов-эксплуатационников», - убежден он.

Экономика - двигатель прогресса

Несмотря на множественные технические и организационные вопросы МГЭС и возрастание интереса к ним, число реализуемых проектов в Сибири по-прежнему чрезвычайно мало. Скорее всего, основным двигателем должна стать экономическая составляющая. В частности, во многих отдаленных поселениях, снабжающихся сейчас электроэнергией от дизельгенераторов, ее себестоимость очень высока. На Алтае она достигает 22 рублей за 1 кВт ч. Например, после запуска ГЭС Джазатор стоимость энергии для местного населения при себестоимости 53 копейки за 1 кВт ч составила 4,2 рубля. Дальнейшее снижение тарифа планируется за счет подключения новых потребителей, перевода социальной сферы на электроотопление и увеличение потребления энергии населением.

Кроме того, одним из основных аргументов активистов строительства МГЭС являются существующие перекосы в централизованном энергоснабжении, когда потери в сетях достигают или превосходят объемы потребляемого отдаленными районами электричества. Так, по словам Юрия Добровинского, Республика Бурятия полностью электрифицирована, поэтому основная задача новых МГЭС - повышение экономической эффективности энергоснабжения.

По мнению многих специалистов, массовому приходу инвесторов в этот сектор мешает прежде всего отсутствие информации о самой возможности участия частного капитала в проектах строительства малых ГЭС. Последней отмашкой для инвесторов стал запуск системы мер государственной поддержки ВИЭ, принятой в ноябре 2007 года, в виде поправок в Федеральный закон «Об электроэнергетике». Они гарантируют субсидирование затрат на подключение генерирующих объектов к сетям за счет средств федерального бюджета, а также обеспечивают надбавки к цене за каждый произведенной сверх нормы оптового рынка малыми ГЭС кВт ч электроэнергии. Также энергосистемам вменено в обязанность закупать в определенных объемах энергию ВИЭ. Принятия всех подзаконных актов, регламентирующих порядок реализации нововведений, нужно ждать не раньше середины 2008 года. После этого, учитывая инициативность местных администраций, зачастую берущих на себя затраты по проектированию, и опыт эксплуатации уже построенных объектов, наступит серьезный прорыв в этом сегменте.

При подготовке статьи использованы материалы периодического научно-технического журнала «Малая энергетика». - М., 2004. - № 1.

  • Гидроэнергетический потенциал России колоссален, но сегодня используется слабо. Неосвоенными остаются 80% гидроэнергоресурсов.
  • Использование энергии малых рек представляется одним из наиболее актуальных направлений в деле освоения гидроэнергоресурсов Российской Федерации.
  • Развитие малой гидрогенерации - экологически приемлемый и экономически целесообразный метод решения целого комплекса проблем, связанных с энергобезопасностью и дефицитом электроэнергии на отдельных территориях нашей страны.

Малая гидроэнергетика

В России энергетический потенциал малых рек очень велик. Число малых рек превышает 2,5 млн (цифра проверена)., их суммарный сток превышает 1000 км3 в год. По оценкам специалистов сегодняшними доступными средствами на малых ГЭС в России можно производить около 500 млрд. кВтч электроэнергии в год.

Малая гидроэнергетика за последние десятилетия заняла устойчивое положение в электроэнергетике многих стран мира. В ряде развитых стран установленная мощность малых ГЭС превышает 1 млн. кВт (США, Канада, Швеция, Испания, Франция, Италия). Они используются как местные экологически чистые источники энергии, работа которых приводит к экономии традиционных топлив, уменьшая эмиссию диоксида углерода. Лидирующая роль в развитии малой гидроэнергетики принадлежит КНР, где суммарная установленная мощность малых ГЭС превышает 13 млн. кВт. В развивающихся странах создание малых ГЭС как автономных источников электроэнергии в сельской местности имеет огромное социальное значение. При сравнительно низкой стоимости установленного киловатта и коротком инвестиционном цикле малые ГЭС позволяют дать электроэнергию удаленным от сетей поселениям.

В 90-е годы в России проблема производства оборудования для малых и микро-ГЭС в основном была решена. Особенно привлекательно создание малых ГЭС на базе ранее существовавших, где сохранились гидротехнические сооружения. Сегодня их можно реконструировать и технически перевооружить. Целесообразно использовать в энергетических целях существующие малые водохранилища, которых в России более 1000.

В середине прошлого века в России (РСФСР) работало большое количество малых ГЭС, однако, впоследствии предпочтение было отдано крупному гидроэнергостроительству, и малые ГЭС постепенно выводились из эксплуатации. Сегодня интерес к малым ГЭС возобновился. Несмотря на то, что их экономические характеристики уступают крупным ГЭС, в их пользу работают следующие аргументы. Малая ГЭС может быть сооружена даже при нынешнем дефиците капиталовложений за счет средств частного сектора экономики, фермерских хозяйств и небольших предприятий. Малая ГЭС, как правило, не требует сложных гидротехнических сооружений, в частности, больших водохранилищ, которые на равнинных реках приводят к большим площадям затоплений. Сегодняшние разработки малых ГЭС характеризуются полной автоматизацией, высокой надежностью и полным ресурсом не менее 40 лет. Малые ГЭС позволяют лучше использовать солнечную и ветровую энергию, так как водохранилища ГЭС способны компенсировать их непостоянство. В РФ налажено производство достаточно надёжного оборудования для малых ГЭС, например оборудование С. Петербургского ЗАО МНТО «ИНСЭТ».(http://www.inset.ru/r/index.htm), которое поставило 4 малых ГЭС и в РБ (Таналыкское водохранилище, пос. Табулды, Узянское водохранилище, МГЭС «Соколки») стоимостью от 9 до 70 тыс.р. за 1 кВт установленной мощности в зависимости от мощности МГЭС.

Примерная схема ТЭО строительства малых ГЭС.

Строительство малых ГЭС (МГЭС) по многим причинам имеет широкие перспективы в развитии различных регионов мира. При сравнении с крупными ГЭС следствия от строительства МГЭС имеют большие преимущества. Однако удельные затраты на строительство МГЭС при их индивидуальном проектировании и строительстве превышают удельные затраты на строительство крупных ГЭС.
Выделяются две фундаментальные задачи, решение которых обеспечит значительное сокращение удельных затрат на возводимые МГЭС:
А. Комплексный подход в развитии энергообеспечения указанного региона.
Б. Применение унифицированных конструктивных и технологических решений как при создании МГЭС в целом, так и отдельных ее элементов.
Таким образом для решения задачи А необходимо:
1. Из всего гидроэнергетического потенциала определенного региона необходимо выделить ту его часть, использование которой экономически наиболее выгодно. Это так называемый «экономический гидроэнергетический потенциал региона». Основными факторами, влияющими на экономический потенциал, приняты следующие показатели:
- уровень развития экономики региона;
- уровни и режимы энергопотребления;
- структура всех мощностей потребления в балансе энергетической системы региона;
- прогнозное изменение величины тарифной ставки за 1 кВт/час.
Важным фактором, влияющим на величину экономического потенциала, является использование гидроэнергетического потенциала уже зарегулированных водотоков: при водохранилищах неэнергетического назначения (для орошения, водоснабжения и др.), на участках сосредоточенных перепадов, на каналах, трактах переброски стоков, при сооружениях в системах водопровода, очистных сооружениях и системах охлаждения энергоблоков ТЭЦ, на трассах промышленных водосбросов.
2. Все водотоки, составляющие экономический потенциал, необходимо систематизировать и выделить среди них малые в зависимости от напора и расхода.
3. После систематизации водотоков и выделения малых водотоков в отдельную категорию следует сделать предварительный выбор створов для строительства малых ГЭС.
4. Анализ гидрологических характеристик створов с учетом данных о напорах в предполагаемом месте строительства ГЭС позволяет сделать предварительную оценку возможной установленной мощности МГЭС в данном створе, а также свести все многообразие возможных вариантов МГЭС с различными типами турбин к возможно минимальному их количеству.
Необходимо отметить при этом, что для более полного использования экономического потенциала региона возможно применение на МГЭС турбин различных типоразмеров, т.е. в зависимости от характеристик водотока на МГЭС могут быть установлены турбины с быстроходностью, отличающейся от применяемой традиционно на таких напорах.
Для решения задачи Б необходимо учитывать целый ряд обстоятельств, позволяющих повысить экономическую эффективность строительства:
- проектирование конкретных объектов должно вестись на основе унифицированных проектно-конструкторских решений,
- при проектировании необходимо использовать унифицированные технологические процессы строительства малых ГЭС.
- проектирование и производство оборудования МГЭС должно строиться по модульному принципу и состоять из унифицированных блоков и агрегатов.
В связи с тем, что стоимость оборудования для малых ГЭС может достигать половины и даже более от общих затрат на строительство, необходимо при разработке энергетического оборудования провести следующие работы:
1. По унификации и стандартизации оборудования;
2. По созданию полностью автоматизированного оборудования, исключающего присутствие на ГЭС дежурного персонала;
3. По использованию оборудования упрощенной конструкции и повышенной надёжности с применением современных материалов;
4. По выбору проточной части, обеспечивающей наибольшее упрощение и удешевление строительных конструкций без существенного снижения энергетических параметров;
5. По обеспечению положительной высоты отсасывания, позволяющей сократить объём подводной части здания ГЭС, а также удешевить и упростить производство работ;
6. По использованию турбин, в основном, одинарного регулирования;
7. По сборке оборудования, производить на заводе-изготовителе для снижения сроков и стоимости монтажа на месте;
8. По применению серийных генераторов и мультипликаторов;
9. По применению унифицированных систем регулирования (систему регулирования гидроагрегатом необходимо привязывать к автоматике ГЭС);
10. По использованию современных технологий для повышения надежности в эксплуатации, снижения затрат на техническое содержание и уход, увеличение срока службы.

На основании разработанных проектов гидроагрегатов задача разработки унифицированных агрегатных блоков для заданных диапазонов напора и расходов гидротурбин для малых ГЭС может быть решена относительно просто, так как габариты указанных блоков можно определить исходя из условий размещения основного и вспомогательного оборудования. Подвод воды по турбинным водоводам и ее отвод по открытому отводящему каналу позволяют в едином ключе для всех малых ГЭС решить конструктивно условие примыкания последних к зданию ГЭС.
Анализ параметров малых ГЭС, намечаемых к строительству, позволит свести все многообразие возможных вариантов ГЭС с различными типами гидроагрегатов к 2-3 типам.
Анализ собранной информации позволяет сделать следующие выводы:
1. По данным характеристик водотоков необходимо возведение МГЭС следующих категорий:
а) Безнапорные и малонапорные ГЭС, Н=0-5 м, на которых в зависимости от местных условий устанавливаются русловые или осевые гидроагрегаты.
б) Низконапорные ГЭС, Н=5-15 м, на которых устанавливаются осевые вертикальные и горизонтальные агрегаты.
2. Для уменьшения количества типоразмеров оборудования с целью обеспечения серийного его изготовления, а также применения типовых строительных конструкций, состоящих из унифицированных блоков, необходимо для будущих МГЭС систематизировать и подобрать оборудование по расходным и напорным характеристикам внутри каждой категории МГЭС.
Это значительно уменьшит количество типоразмеров оборудования, что повысит как эффективность производства турбин, за счет снижения затрат на их освоение, так и эффективность строительных работ.
3. Исходя из сказанного, целесообразно иметь 2-4 типоразмера гидроагрегатов, характеристики которых для выбора оптимального варианта перекрывались бы в переходных по напорам зонах. При этом для упрощения конфигурации и уменьшения строительных работ в подводной части агрегата, необходимо обеспечить положительную высоту Н расположения гидроагрегата с реактивными турбинами.
4. Агрегаты МГЭС следует по возможности комплектовать серийными асинхронными генераторами или двигателями в качестве генераторов, а случае необходимости, серийными повышающими передачами - мультипликаторами. В ряде случаев могут быть использованы серийные синхронные генераторы.
Исходя из вышесказанного и, учитывая неразрывность решения всего комплекса задач, с целью уменьшения затрат при создании МГЭС предлагается следующий алгоритм решения по вышеуказанной тематике:
І. Выполнение изыскательских и предпроектных работ с разработкой ТЭО
на строительство малых ГЭС:
1. Обследование энергетических потребителей
2. Характер и графики электрических нагрузок.
3. Характер и графики тепловых нагрузок.
4. Обследование гидроресурсов
5. Изыскательские работы в выбранных створах.
6. Обследование схемы электро и теплоснабжения
7. Расчет гидротехнических ресурсов водотоков
8. Выбор вариантов малых ГЭС (МГЭС).
9. Выбор схемы подключения МГЭС к существующим электросетям.
10. Расчет технико-экономических показателей строительства МГЭС.
11. Формирование технических заданий на проектирование МГЭС и энергетического оборудования.
12. Определение перечня работ для безопасной работы объектов.

Стоимость выполнения данных работ – 2 млн. рублей.
Сроки выполнения работ – 80-90 дней с момента начала финансирования.

После выполнения технико-экономического обоснования предлагается провести следующие работы:
ІІ. На базе Технико-экономического обоснования решить следующие вопросы:
а) определить общую стоимость всей программы и сроки реализации;
б) выбрать очередность строительства и финансирования объектов (сроки, суммы, условия оплаты);
в) определить пути технико-экономической реализации поставленных задач;
г) провести выбор типоразмеров агрегатных блоков и строительных модулей;
д) осуществить проектирование агрегатных блоков;
е) осуществить проектирование строительных модулей;
ж) осуществить проектирование турбин, генераторов, системы автоматического управления (САУ);
з) изготовить необходимые турбины, генераторы, САУ;
и) изготовить необходимые строительные модули;
провести работы по строительству и монтажу МГЭС на месте;
к) провести пуско-наладочные работы;
л) осуществить пуск объектов в эксплуатацию.

Невозможно при обзоре альтернативных источников энергии обойти генераторы
Грицкевича. (http://napolskih.com/modules/newbb_plus/viewtopic.php?topic_id=405)

Олег Вячеславович Грицкевич родился во Владивостоке в 1947 году, окончил Дальневосточный политехнический институт, работал в системе энергоавтоматики Прибайкалья, в Дальневосточном отделении РАН.
В конце 1999 года восемь владивостокских ученых вместе с семьями навсегда переехали в Америку. Конструкторское бюро под руководством Олега Грицкевича увезло из России не только свои умы, но и уникальные изобретения.

Суть их разработок - создание принципиально нового энергетического генератора. Как отметил в беседе с корреспондентом "Сегодня" автор идеи и конструктор первой установки Олег Грицкевич, он просто предложил способ получения энергии, основанный на известных физических принципах, но использующий уникальные конструктивные решения. Подробностей изобретатель избегает. "Старика Вольта вывернуло не в ту сторону, и все пошло наперекосяк: кучи железа, - смеется он. - А про электростатику забыли. Хотя первые опыты с электростатикой проводили еще в Древней Греции. А нам удалось за 20 лет научиться пользоваться этой энергией".
То, что говорит Грицкевич, звучит неожиданно: "Благодаря этой установке мы получаем доступ к неиссякаемому источнику энергии. Генератор достаточно компактен и может поместиться в каждом автомобиле, самолете, доме, заводе, даже в контейнере. Он безмеханический, там нет ни одного насоса. Он не требует обслуживания и работает беспрерывно в течение 25-30 лет, а с применением новейших материалов и все 50. При этом мощность средней установки достаточно велика". Да и стоит гидромагнитное динамо дешево, а следовательно, стоимость вырабатываемой им энергии в 40 раз меньше, чем на атомной электростанции, в 20 раз - чем на тепловой, и даже в 4 раза дешевле дармовой энергии ветряков. Постройка гидромагнитного динамо обходится в 500 долларов за киловатт. При всей уникальности описания эта установка вполне материальна.

Сама идея была запатентована еще в 1988 году в Госкомиссии СССР по делам изобретений и открытий как "Способ генерации и реализующий его электростатический плазмогенератор ОГРИ". Первый опытный образец работал более пяти лет в горах Армении, снабжая электричеством полевой научный лагерь. Наконец, гидромагнитное динамо Грицкевича получило не только свидетельство Роспатента, но и одобрение российских научных кругов вплоть до Высшего инновационного совета.

По словам изобретателя, ни копейки госсредств потрачено не было, все делалось за собственный счет и с подачи и благословения академика Виктора Ильичева. "Работали не покладая рук, - говорит Грицкевич. - На первую установку деньги дал один богатый армянин, открыл ящик с деньгами и сказал, мол, берите сколько надо. Мы попросили 500 тысяч рублей "павловскими". Потом не хватило, пришлось еще сброситься". В 1991 году Грицкевич выступил на Высшем инновационном совете. Заключение совета - положительное. "В 1994 году меня принял Олег Сосковец, - продолжает Грицкевич. - Но при этом сказал: "Идея блестящая, но денег на ее реализацию в бюджете нет". Я получал ответы и от Путина, и от Степашина. Скорее от их секретариатов. Ответы однотипные - это прекрасно, если деньги изыщите. Признание мировой науки появилось не сразу. Схожими проблемами в США занимается Институт альтернативной энергии. Они проводили аналогичные опыты, но их генератор получался радиоактивным. У Грицкевича экологически все стерильно. Максимум, что с ней может произойти, - закипит и взорвется".

На американцев Грицкевич вышел не сам. В прошлом году его конструкторское бюро разместило информацию об установке в Интернете. Пошли отклики со всего света, даже от Далай-Ламы, который назначил премию в миллион долларов тому, кто первый получит выход к свободной энергии. "А затем мне позвонили из американского генконсульства во Владивостоке, - продолжает рассказ Грицкевич, - и пригласили на Всемирный конгресс новых энергетик в Солт-Лейк-Сити в августе этого года. Наутро за два часа оформили все документы. Резвость объяснили тем, что имеют указание о содействии из Госдепартамента США".
С конгресса Олег Грицкевич вернулся не столько окрыленный признанием коллег, сколько ошарашенный предложением американцев перебираться в Штаты всем бюро и продолжать свои исследования (а также организовать серийное производство динамо) на базе конструкторского бюро в Сан-Диего, корпус которого военные предложили ему в пользование. Отъезду предшествовали месяцы раздумий и переговоров - и невостребованное изобретение вместе с создателями покинуло Владивосток и Россию. Там они уже приступили к организации научного процесса на благо американского народа.

Глобальная энергия» – ловушка для идей!

Не секрет, что в недалекой перспективе новый мировой энергетический и экономический баланс будет определяться не нефтегазовыми монополиями, а теми, кто владеет принципиально новыми источниками энергии. Причем, этот процесс неизбежен. Самое главное сейчас, кто начнет и будет первым. Кто решится на это, тот и получит соответствующе возможности - экономические и политические.

11 ноября 2002г. в Брюсселе на итоговой пресс-конференции после завершения саммита глав государств России и Евросоюза В.В. Путин объявил о создании международной научной награды "Глобальная энергия".

Считается, что её учреждение - хорошая возможность мотивировать ученых и талантливую молодежь всего мира на выдающиеся достижения в области энергии и энергетики.

Интересно, что знает Президент о реальных российских разработках новых источников энергии, которые уже доказали свою эффективность и могли стать причиной краха крупнейших энергетических компаний страны - ОАО "Газпром", РАО "ЕЭС России" и НК "ЮКОС", при поддержке которых учреждена указанная награда?

Как понимать ситуацию? Или эти компании, инициировавшие создание премии, хотят прибрать к рукам передовые разработки и в скором будущем перевести свой энергетический контроль на новые источники энергии (газ и нефть кончаются, и они это прекрасно понимают) или наоборот - не хотят допустить распространения новых видов энергии пока всю нефть не выкачают?

Почему ранее не оказывалась государственная помощь таким разработчикам, как, к примеру, Олег Грицкевич, который со своим уникальным изобретением в 1999 году был вынужден уехать в США? Идея О. Грицкевича была запатентована еще в 1988 году в Госкомиссии СССР по делам изобретений и открытий как "Способ генерации и реализующий его электростатический плазмогенератор ОГРИ".

Первый опытный образец успешно работал более пяти лет в горах Армении, снабжая электричеством полевой научный лагерь. Гидромагнитное динамо Грицкевича получило не только свидетельство Роспатента, но и одобрение российских научных кругов вплоть до Высшего инновационного совета.

Его изобретение принимали на самом высоком уровне с восторгом... и возмущением. "Ты нам поломаешь всю нефтегазовую политику! Куда мы денем армады энергетиков?" - эта очень показательна фраза бала брошена Грицкевичу одним из участников симпозиума, проходившего в 1991 году в Атоммаше.

Ситуация вокруг премии действительно неоднозначная, этому недавно поступило подтверждение из информированных источников:

«При Президенте РФ создана специальная аналитическая группа, в задачи которой входит поиск и анализ информации о реальных разработках в сфере перспективных источников энергии и ресурсосберегающих технологий.

Что примечательно, кроме представителей Академии наук РФ в эту закрытую группу по инициативе спецслужб вошли два экстрасенса суперкласса (мужчина и женщина), использующие нетрадиционные методы получения информации. Именно они дают основное заключение о перспективности той или иной идеи.

Цель всей затеи – создать контролируемую ситуацию внедрения инноваций.

Подразумевается, что в итоге на рынок будут дозировано допускаться только те технологии, которые на каждом конкретном этапе не станут угрожать благополучию крупнейших энергетических компаний и всей инфраструктуре традиционной энергетики.»

Известный российский ученый, академик Евгений Велихов считает:

"... Появление международной энергетической премии, не имеющей на сегодняшний день аналогов ни в одной стране мира, - это попытка научного сообщества показать всей планете свою прямую заинтересованность в совершенствовании топливно-энергетического комплекса".

Или академик наивно заблуждается, или просто не хочет видеть, что это не «попытка научного сообщества» - показать.., а проснувшееся желание монстров традиционного топливно-энергетического комплекса - взять...

С учетом примеров недавнего равнодушия к новым технологиям со стороны Правительства России и фактов препятствования их распространению силами нефтегазовых монополий, многое становится понятным.

Мы являемся свидетелями реальных шагов по контролю над процессом преобразования мировой экономики и перераспределения ее ресурсов.

В России еще остались изобретения подобные генератору О.Грицкевича, а на выходе ожидаются новые, но какая судьба постигнет их и их авторов?

Об этом, наверное, надо трижды подумать прежде, чем попытаться стать номинантом «Глобальной энергии»?!

Конечно, изобретателя в РФ нет, но остались его патенты http://www.sciteclibrary.ru/rus/catalog/pages/6697.html , которые можно найти провести соответствующие НИОКР и довести идею до внедрения. И можно найти самого О.В. Грицкевича. По последним данным он наладил промышленный выпуск своих генераторов в Южной Корее и Болгарии.
В условиях энергетического кризиса, при постоянной нехватке нефти и газа и повышении цен на них, в условиях глобального потепления, альтернативная энергетика помогает решить сразу 2 задачи. 1-экономит углеводороды для химического производства, где их использовать намного выгоднее. 2-не повышает температуру окружающей среды, а понижает её. Конечно, при существующем тренде постоянного повышения энергопотребления и переходе человечества полностью на такие источники энергии, может возникнуть эффект охлаждения земли, но такая перспектива никак не может быть близкой, и уже в описанных устройствах есть такие, которые могут в принципе качать энергию из космоса, где она неисчерпаема.

12/03/2014

Все больше мирового внимания в последние годы привлекает нетрадиционная энергетика. Это совершенно правомерно и объяснимо: применение солнечной, речной, морской, ветряной энергии замещает использование дорого топлива, а небольшие станции могут обслуживать труднодоступные районы. Этот факт актуален для стран с горными массивами или малонаселенными пунктами, где прокладка электросетей экономически нецелесообразна.

В России же почти 70% территории относятся к зоне децентрализованного электроснабжения. Даже сегодня у нас можно найти населенные регионы, которые не обеспечены электричеством. И это не всегда Сибирь или Крайний Север. Некоторые поселки Урала весьма неблагополучны для энергетики. Но если разобраться, электрификация «трудных» районов может оказаться не таким уж трудным делом. Ведь даже в самых отдаленных уголках можно отыскать речку или ручей, где с легкостью разместиться микро-ГЭС.

Тем более, что в нашей стране для повсеместного развития гидроэнергетики есть все условия. Российский потенциал гидроресурсов сопоставим с объемом вырабатываемой электроэнергии всеми существующими электростанциями. А энергетические возможности малой гидроэнергетики во много раз больше, чем потенциал ветра, солнца и биомассы сложенных вместе. Но, к сожалению, энергию рек мы задействовали только на четверть от возможного. Хотя именно с ней многие эксперты связывают развитие энергетической отрасли в обозримом будущем.

Гидроэнергетика – это выработка электрической энергии с помощью гидротурбин различных мощностей, которые установлены на постоянных водотоках. В большинстве случаев при создании гидроэлектростанции требуется возведение плотины с установкой гидротурбин, но не исключается возможность создания бесплотинных станций. К объектам малой гидроэнергетики относятся малые ГЭС (гидроагрегаты мощностью от 100 кВт до 30 МВт) и микро-ГЭС (мощность до 100 кВт).

Малые ГЭС (МГЭС) представляют собой турбину с генератором и системой автоматического управления. А в соответствии с характером использования гидроресурсов они подразделяются на русловые — станции с маленькими водохранилищами; станции, в использовании которых находится скоростная энергия свободного течения реки; станции с источником энергии в виде перепада уровня воды.

Спектр источников энергии для МГЭС очень обширен. Это небольшие речушки и ручьи, также используется перепад высоты озерных водосборов и оросительных каналов ирригационных систем. Турбины малых электростанций могут быть гасителем энергии на перепаде высоты различных трубопроводов, которые перекачивают жидкие продукты. Установить небольшие гидроагрегаты возможно на технологических водотоках, таких как промышленный или канализационный сбор. С микро-ГЭС ситуация еще проще – они устанавливаются почти в любых местах и могут использоваться в качестве источника энергии в дачных поселках, фермерских хозяйствах, хуторах, небольших производствах.

У каждого способа получения электроэнергии есть свои плюсы и минусы, МГЭС в этом случае не являются исключением. Основное достоинство малой гидроэнергетики в том, то она экологически безопасна. Процесс сооружения и эксплуатации не имеет вредного воздействия на водоем, атмосферу, растительный или животный мир, местный микроклимат. Помимо этого, современные МГЭС характеризуются простотой конструкции и полной автоматизацией. Они могут осуществлять работу как самостоятельно, так и в качестве составной части электросети, причем эксплуатационный ресурс данных агрегатов – не менее 40 лет.

Немаловажен и тот факт, что для организации работы МГЭС большие водохранилища с огромными затопленными территориями не требуются. При их создании повышается энергетическая безопасность региона, обеспечивается независимость от дорогостоящих видов топлива, происходит экономия дефицитных ископаемых. Строительство таких станций не нуждается в крупных капиталовложениях, большом количестве энергоемкого строительного материала и существенных тудозатратах, окупается в относительно короткий период времени.

Минусы малой гидроэнергетики не так существенны, как в некоторых других видах получения энергии, но, тем не менее, они есть. Как и все локализированные источники, объекты МГЭС уязвимы в случае возможности выхода из строя, тогда потребители рискуют остаться без электричества. Решение проблемы – ввод резервной генерирующей мощности. Самыми распространенными авариями могут быть разрушения плотины при переливе через нее воды, при неожиданном подъеме. Иногда малые ГЭС становятся причиной заливания водохранилищ, а также могут оказывать влияние на процессы формирования русла. Выработка электроэнергии такими станциями неравномерна в силу зимних и летних спадов. Поэтому многие районы используют малую гидроэнергетику, как резервный вариант.

В последние десятилетия малые гидроэлектростанции находят широкое распространение во многих странах. В некоторых из них общая мощность МГЭС составляет более 1 млн. кВт. Такие результаты наблюдаются в США, Канаде, Швеции, Испании, Франции, Италии. Неоспоримый лидер в этой сфере КНР. Здесь работает большое количество МГЭС составной мощностью 13 млн. кВт. В перечисленных странах малые электростанции выступают в качестве местных экологически чистых источников энергии. Их работа экономит традиционные топлива, значительно сокращая вредные выбросы диоксида углерода.

Российская малая гидроэнергетика имеет огромный потенциал. Количество небольших рек у нас более 2,5 млн., в сумме их сток превышает 1000 км. кубических в год. Специалисты оценивают, что сегодня мы в состоянии с помощью малых ГЭС генерировать более 500 млрд. кВтч в год. Основной ресурс для развития МГЭС сосредоточен в районах Дальнего Востока, Архангельске, Мурманске, Калининграде, Карелии, Туве, Якутии, Тюменской области.

Свое развитие в нашей стране малая гидроэнергетика начала в первые годы 20 века. Исторические документы говорят о том, что в 1913 году в России работали 78 станций, общей мощностью 8,4 МВт, самая большая из них располагалась на реке Мургаб – 1,35 МВт. Руководствуясь данными показателями, можно сделать вывод, что эти ГЭС относятся к разряду малых. В 1941 на территории России работало более 600 МГЭС, суммарной мощностью в 330 МВт. Бум в строительстве малых станций наблюдается в 40-50е гг. 20 века, когда каждый год вводились более 1000 гидрообъектов малой мощности. После окончания ВОВ их общее количество составило 6500 единиц.

Но в 50-е годы произошел глобальный переход к строительству ГЭС больших мощностей и перевод сельских потребителей на централизованное энергоснабжение, что привело к полному упадку отрасли малых ГЭС. На момент распада СССР в стране осталось всего 55 действующих МГЭС. В 2000-х правительство попыталось стимулировать развитие малой гидроэнергетики, но этому помешал кризис. До последнего момента процент энергии, вырабатываемой гидроэлектростанциями медленно, но постоянно снижался: в 1995 году его доля составляла 21%, в 1996 – 18%, в 1997 – 16%. Причина этого в износе оборудования и увеличении в энергобалансе страны роли другого энергоресурса, которым является природный газ.

Но, тем не менее, эксперты прогнозируют, что доля электроэнергии малых ГЭС в ближайшем будущем станет постепенно увеличиваться. Наиболее актуален этот процесс будет для зоны децентрализованного обеспечения, где с помощью МГЭС будут заменять старые неэкономичные дизель- электростанции. Данная мера позволит сократить расходы федерального бюджета и повысить эффективность и энергетическую безопасность «трудных» районов. Так, в Дальневосточных регионах энергию до сих пор вырабатывают несколько тысяч дизельных электростанций, зависимость электроснабжения от поставок дизельного топлива почти 100%. Стоимость и доставка дизтоплива для подобных целей очень высока, поэтому вопрос о введении тут других энергоресурсов стоит очень остро.

Работа по обеспечению таких районов альтернативными источниками энергии, в том числе и малыми ГЭС уже началась. Так, в Адыгее введены в действие 2 МГЭС, работа которых направлена на подачу питьевой воды. В Краснодарском крае установили несколько небольших гидроагрегатов мощностью в 350 кВт. В Тыве и на Алтае работают 3 МГЭС – 10, 50 и 200 кВт. В Карелии и Ленинградской области действуют 4 мини ГЭС мощностью от 10 до 50 кВт., в Башкирии есть 4 МГЭС, оснащенные агрегатами от 10 до 50 кВт., и многие другие. К 2020 году правительство планирует довести объем электроэнергии малых ГЭС до 1000 МВт мощности.

Застройщики сейчас активно популяризируют малые ГЭС, для того, чтобы получить разрешения у местных общин на их постройку. Но экологический вред плотин настолько велик, а производительность гидроэнергетики настолько низкая, что все это похоже скорее на бизнес девяностых. Давайте рассмотрим несколько мифов связанных с малыми гидроэлектростанциями.



Миф 1. Малые ГЭС - помогут достичь энергонезависимости.

Этот миф сформировался на основании изучений гидроэнергетического потенциала малых рек, без учета экологических, социально-экономических, законодательных и других ограничений и рисков, которые влияют на то, какую часть этого потенциала можно использовать без вреда для природы, местных хозяйств, без нарушения законов и международных правовых актов, без учета рисков связанных с гидроэнергетикой в целом.
На самом деле все значительно сложнее.

Если говорить об энергонезависимости целой страны. То в Украине, например, большие и средние ГЭС составляют только 7,88% (9 обьектов) от общего обьема поставляемой энергии. Малые ГЭС составляют всего - 0,16% (80 обьектов).

При чем обьемы производства электроэнергии в Украине намного превышает потребности населения и активно экспортируется. И наращивать эти обьемы в масштабах страны перекрывая все реки малыми греблями и плотинами это по сути вредительство, с целью обогащения.

Миф 2. Малые ГЭС дают дешевую экологически чистую энергию, которая поможет улучшить энергообеспеченность отдаленных общин.

Стоимость электроэнергии малых ГЭС абсолютно неконкурентноспособна по сравнению с другими видами производимой энергии. Даже с учетом «зеленых тарифов», прибыль от малых ГЭС обеспечивается только наличием схем обязательного выкупа производимой энергии.

Это не говоря уже об экологичности самой постройки малых ГЭС, которые, как правило, сопровождаются грубыми нарушения всех экологических норм, игнорированием законов и давлением на местные общины.

Миф 3. Малых ГЭС планируется немного и решения об их постройке касается только некоторых общин.

От инвесторов малых ГЭС очень часто можно услышать, что ни о каких сотнях малых ГЭС речь не идет, ведь нет столько мест для их постройки и все это только планы, которые вряд ли будут когда-то воплощены в жизнь.

На самом деле таких проектов тысячи. И каждый раз местные активисты сталкиваются со случаями, когда органы местного самоуправления тайком от общин выдают разрешения на постройки малых ГЭС застройщикам. И местная община узнает о постройке плотины только когда тяжелая техника заходит в русло реки и начинает разрушать водоемы.

Практически каждая речка с более-менее значительным перепадом высот и минимальным наполнением воды становится жертвой горе-бизнесменов. Преимущество отдается горным частям рек, а также малым рекам.

Причина неочевидна, она определяется кинетической энергией воды. Просто большим перепадом воды можно достигнуть нужного преобразования механической энергии в электрическую, а расходы в постройке малых ГЭС в верховьях рек значительно ниже чем в низовье, где русло всегда шире.

Миф 4. ГЭС не несет угрозы окружающей среде, не будет иметь негативного влияния для населения и общин.

На самом деле ГЭС наносит огромный вред окружающий среде на всех этапах ее существования. Особо опасным является постройка одновременно сотен малых ГЭС без учета их кумулятивного эффекта.

Миф 5. Малая гидроэнергетика - это передовой мировой опыт. Она соответствует самым безопасным для природы мировым образцам.

На самом деле, основным технологиям, которые используются в малых ГЭС уже боле ста лет. А большинство ГЭС построено там, где их вообще не должно быть через экологические ограничения.
Миф 6. Малые ГЭС всегда лучше для окружающей среды, чем большие.

Долгое время считалось, что малые ГЭС намного безопасней чем крупные. Но когда исследователи сравнили потери суходола и прибрежных поселений в расчете на 1МВт произведенной электроэнергии, то оказалось, что потери территорий экосистем от малых ГЭС могут в сотни раз превышать потери от больших ГЭС в расчете на 1МВт.

Также малые ГЭС вызывают большую фрагменитацию экосистем, ухудшают качество воды и влияют на гидрологию рек и их бассейнов.

Миф 7. Малые ГЭС будут защищать от паводков и наводнений.

На самом деле, нормальный режим работы малых ГЭС несовместимый с противопаводковой защитой.

Последние исследования показывают, что лучшей защитой от наводнений и паводков являются не дорогостоящие инженерные сооружения, а естественные речные поймы и снесение всех инженерных сооружений (плотин, дамб и т.д.), которые перекрывают русло реки и сужают пойму, создают помехи свободному ходу водных потоков.

Миф 8. Малые ГЭС не опаснее водяных мельниц

Часто этот факт, преподают как аксиому. Но это далеко не так. Малые ГЭС намного опаснее, чем водяные мельницы. Основные отличия кроются в специфике работы этих сооружений.

Водяные мельницы работают нерегулярно и часто для их запуска достаточно погрузить колесо в воду, без перекрытия реки плотиной. Кроме этого эти плотины были значительно меньше, чем плотины малых ГЭС и при паводках они полностью затапливались не создавая препятствий для миграции рыбы. Кстати, особенности конструкции этих плотин не создавали препятствий для миграции мальков вниз по течению.

Малые ГЭС - капитальные сооружения, которые работают максимальное количество дней в году. Постоянная работа таких дамб приводит к тому, что в период нереста и миграции риб, молодая рыба не способна преодолеть плотину и гибнет в турбинах. А часто в результате работы турбин происходит высушивание русла реки, что приводит к разрушению местной экосистемы.

Миф 9. Малые ГЭС принесут благополучие общинам, сопутствуют развитию туризму и рекреации

На самом деле, малые ГЭС делают невозможным некоторые виды туризма и рекреации, в частности сплавный и зеленый туризм.

Кроме того, все поступления в местный бюджет и выплаты, которые инвесторы обещают местным общинам, это просто подкуп обещаниями. Малые ГЭС создаются только с одной целью, выкачивание компенсаций из госбюджета в частные карманы.

Миф 10. Малые ГЭС уменьшают парниковых газов и препятствуют изменению климата.

Еще одно утверждение, которые построено на неполноте всех собранных аргументов.
Дело в том, что при строительстве ГЭС, как правило создается водохранилище, а в момент его наполнения увеличиваются выбросы другого газа - метана, который имеет парниковый потенциал в 20 раз выше, чем СО2. Это обусловлено процессами разложения органических веществ, например растений, в условиях затопления водохранилища.

Тем более для запуска ГЭС нужна электроэнергия с ТЭС, которая работает на ископаемом топливе. А электроэнергия, вырабатываемая малыми ГЭС выкупается вынуждено и по завышенным тарифам.

Миф 11. Экологи критикуют не предлагая альтернативы.

На самом деле экологи предлагают целый ряд альтернатив, которые позволяют повышать энергетическую безопасность, благополучие местных жителей и сохранять природу.

Одним из самых перспективных направлений является энергосбережение, которое может уменьшить энергии страны в 2 раза уже к 2030 году.

Возможным является развитие бесплотинных ГЭС, которые не забирают русло в трубы, а устанавливаются в потоке. Но для бизнеса они не интересны, так как вырабатывают слишком мало энергии, достаточной только для обеспечения частного домохозяйства.
Их можно устанавливать достаточно много, без вреда для окружающей среды и такие ГЭС способны обеспечивать энергонезависимость небольших отдаленных общин.

Как можно остановить развития гидроэнергетики и прекратить уничтожение окружающей среды

Единственный путь - это просвещение местных общин и защита местных рек во имя нашего общего будущего. От делков из 90-х можно защитится только реальными уверенными действиями на месте.

Кстати эта борьба идет не только у нас. В США (штат Вашингтон) на реке Евла недавно были снесены две плотины высотой 33 и 64 метра, которые 102 года перекрывали реку и миграционные пути рыбы. Это снос, который является крупнейшим сносом плотины по экологическим причинам в истории, произошел благодаря борьбе местных жителей и экологов - защитников рек. реки и рыбы оказались, в конце концов, важнее и для местной общины, и для государства.

Малая гидроэнергетика

Гидроэнергетика – область наиболее развитой на сегодня энергетики на возобновляемых ресурсах, использующая энергию падающей воды, волн и приливов.

Основные направления развития гидроэнергетики: восстановление старых МГЭС путем капитального ремонта и частичной замены оборудования; сооружение новых МГЭС на водохранилищах неэнергетического (комплексного) назначения, на промышленных водосбросах; строительство бесплотинных ГЭС, в которых используется кинетическая энергия движущейся массы воды (течение). Такие станции, мощностью до 10...25 кВт, не требуют больших капитальных затрат на строительство, экологичны и удобны в использовании при энергоснабжении потребителей небольшой мощности, расположенных на берегах рек, при наличии перепадов высот на небольших ручьях (рукавные ГЭС) и др. При наличии водных потоков перспективно также применение водных таранов для целей водоснабжения, а также использование водяных колес и турбин небольшой мощности для привода компрессоров тепловых насосов.

Описание работы гидроэлектростанций

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потенциальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию.

Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

Преобразование потенциальной энергии воды в электрическую происходит на гидроэлектростанции. Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее аккумулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

Рис.1. Машинная станция с гидротурбиной

Для преобразования энергии воды в механическую работу используются гидротурбины (рис.1).

Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, - водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже.

Максимальное значение КПД, равно 100% . Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести.

КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины.

Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана. Однако этот тип турбин распространен в меньшей степени из-за перепада давления.

ГЭС бывают самых различных мощностей – от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС, установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

Гидроэлектростанции и жизненная среда

Говоря о гидроэлектростанциях, нельзя не отметить, что никакие другие отдельно взятые инженерные сооружения не оказывают такого сильного воздействия на природу, как крупные водохранилища.

Водохранилище снабжает водой не только людей, но и весь растительный и животный мир, который активно реагирует на новые благоприятные условия. Это способствует появлению новых биологических сообществ, развитию которых прежде препятствовал недостаток воды (что особенно наглядно проявляется у небольших прудов, устраиваемых для развития рыбного хозяйства).

Однако при объективной оценке изменения экологических условий нельзя не учитывать некоторых отрицательных биохимических и лимнологических факторов.

Как известно, в стоячей воде водохранилищ кислородный обмен происходит гораздо медленнее, чем в водотоках (реках и ручьях). Попадая в такую воду, химические примеси могут создать в ней столь неблагоприятную стратиграфию (т.е. образовать устойчивые слои различного состава), что биологическая жизнь станет невозможной, погибнут рыбы и многие другие водные организмы. А при спуске такой отравленной воды в реку может наступить гибель рыбы во всем водотоке.

Опасны для водохранилища и водоросли, которые изменяют химический состав воды. Особенно вредны и экологически неблагоприятны процессы гниения в водоемах промышленных районов.

В целом можно считать, что водохранилища оказывают экологически благоприятное влияние на окружающую среду, а отрицательные факторы обусловлены в первую очередь сбросом промышленных отходов и (в меньшей степени) безответственным поведением весьма большого числа туристов и отдыхающих. Что же касается непосредственно технологического процесса выработки электроэнергии на гидростанциях, то с точки зрения экологии он совершенно безопасен. Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе.

При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т.п. К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории.

По водохранилищу наиболее эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы.

Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и коммунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

Строительство больших плотин с электростанциями, как правило, способствует сохранению и обогащению природы. Искусственные озера позволяют комплексно использовать водные ресурсы. Вода не только приводит в действие турбины, но и орошает обширные прилегающие земли и тем самым обеспечивает развитие сельского хозяйства. Водохранилища смягчают резкие контрасты погоды и климата, помогают бороться с засухой, на их берегах отдыхают тысячи людей.